转移学习的一种常见做法是通过预先培训数据丰富的上游任务来初始化下游模型权重。在对象检测中,特征主链通常用成像网分类器的权重初始化,并在对象检测任务上进行微调。最近的作品表明,在更长的培训方案下,这不是严格必要的,并提供了从头开始训练骨干的食谱。我们研究了这种端到端训练趋势的相反方向:我们表明,一种极端的知识保存形式 - 冻结分类器至关重要的骨干 - 始终改善许多不同的检测模型,并导致可观的资源节省。我们假设并通过实验证实,其余的检测器成分的容量和结构是利用冷冻骨架的关键因素。我们发现的直接应用包括对严重案例的绩效改进,例如检测长尾对象类别以及计算和内存资源节省,这有助于使该领域更容易访问具有更少的计算资源的研究人员。
translated by 谷歌翻译
传输学习方法旨在使用在丰富的源域上掠过的模型来提高数据稀缺目标域中的性能。一种成本效益的策略,线性探测涉及冻结源模型并培训目标域的新分类头。此策略的表现优于更昂贵但最先进的方法 - 将源模型的所有参数微调到目标域 - 可能是因为微调允许模型从中间层利用有用的信息否则被稍后的净化层丢弃。我们探讨了这些中间层可能直接剥削的假设。我们提出了一种方法,头对脚趾探测(Head2ToE),其从源模型的所有层中选择特征,以训练目标域的分类头。在VTAB-1K的评估中,Head2Toe与平均微调获得的性能相匹配,同时减少培训和储存成本一百倍或更多,但批判性地,用于分配转移,头部2ToE优于微调。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
We introduce a general-purpose conditioning method for neural networks called FiLM: Feature-wise Linear Modulation. FiLM layers influence neural network computation via a simple, feature-wise affine transformation based on conditioning information. We show that FiLM layers are highly effective for visual reasoning -answering image-related questions which require a multi-step, high-level process -a task which has proven difficult for standard deep learning methods that do not explicitly model reasoning. Specifically, we show on visual reasoning tasks that FiLM layers 1) halve state-of-theart error for the CLEVR benchmark, 2) modulate features in a coherent manner, 3) are robust to ablations and architectural modifications, and 4) generalize well to challenging, new data from few examples or even zero-shot.
translated by 谷歌翻译
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models with continuous generators. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms. † * Now at Google Brain † Code for our models is available at https://github.com/igul222/improved_wgan_training.
translated by 谷歌翻译
Charisma is considered as one's ability to attract and potentially also influence others. Clearly, there can be considerable interest from an artificial intelligence's (AI) perspective to provide it with such skill. Beyond, a plethora of use cases opens up for computational measurement of human charisma, such as for tutoring humans in the acquisition of charisma, mediating human-to-human conversation, or identifying charismatic individuals in big social data. A number of models exist that base charisma on various dimensions, often following the idea that charisma is given if someone could and would help others. Examples include influence (could help) and affability (would help) in scientific studies or power (could help), presence, and warmth (both would help) as a popular concept. Modelling high levels in these dimensions for humanoid robots or virtual agents, seems accomplishable. Beyond, also automatic measurement appears quite feasible with the recent advances in the related fields of Affective Computing and Social Signal Processing. Here, we, thereforem present a blueprint for building machines that can appear charismatic, but also analyse the charisma of others. To this end, we first provide the psychological perspective including different models of charisma and behavioural cues of it. We then switch to conversational charisma in spoken language as an exemplary modality that is essential for human-human and human-computer conversations. The computational perspective then deals with the recognition and generation of charismatic behaviour by AI. This includes an overview of the state of play in the field and the aforementioned blueprint. We then name exemplary use cases of computational charismatic skills before switching to ethical aspects and concluding this overview and perspective on building charisma-enabled AI.
translated by 谷歌翻译
There are two important things in science: (A) Finding answers to given questions, and (B) Coming up with good questions. Our artificial scientists not only learn to answer given questions, but also continually invent new questions, by proposing hypotheses to be verified or falsified through potentially complex and time-consuming experiments, including thought experiments akin to those of mathematicians. While an artificial scientist expands its knowledge, it remains biased towards the simplest, least costly experiments that still have surprising outcomes, until they become boring. We present an empirical analysis of the automatic generation of interesting experiments. In the first setting, we investigate self-invented experiments in a reinforcement-providing environment and show that they lead to effective exploration. In the second setting, pure thought experiments are implemented as the weights of recurrent neural networks generated by a neural experiment generator. Initially interesting thought experiments may become boring over time.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
A statistical ensemble of neural networks can be described in terms of a quantum field theory (NN-QFT correspondence). The infinite-width limit is mapped to a free field theory, while finite N corrections are mapped to interactions. After reviewing the correspondence, we will describe how to implement renormalization in this context and discuss preliminary numerical results for translation-invariant kernels. A major outcome is that changing the standard deviation of the neural network weight distribution corresponds to a renormalization flow in the space of networks.
translated by 谷歌翻译
We present an automatic method for annotating images of indoor scenes with the CAD models of the objects by relying on RGB-D scans. Through a visual evaluation by 3D experts, we show that our method retrieves annotations that are at least as accurate as manual annotations, and can thus be used as ground truth without the burden of manually annotating 3D data. We do this using an analysis-by-synthesis approach, which compares renderings of the CAD models with the captured scene. We introduce a 'cloning procedure' that identifies objects that have the same geometry, to annotate these objects with the same CAD models. This allows us to obtain complete annotations for the ScanNet dataset and the recent ARKitScenes dataset.
translated by 谷歌翻译